# **Mendel's Experiments**

The first table below shows what happened when Mendel crossed purebred purple-flowering pea plants with purebred white-flowering pea plants. Each  $F_1$  hybrid inherits one purple-flower allele and one white-flower allele. Because the purple-flower allele is **dominant**, the flowers on all the  $F_1$  plants are purple.

## FLOWER COLOR: Making the F<sub>1</sub> generation

| All allele pairs <b>inherited</b> from the purebreds are the same | <b>purple</b> white | <b>purple</b> white | <b>purple</b> white | <b>purple</b> white |
|-------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|
| F <sub>1</sub> flower color will be:                              | purple              | purple              | purple              | purple              |

But when the  $F_1$  hybrids produce the next **generation** of hybrids, things are different. Each  $F_1$  parent has an equal chance of giving a purple-flower or a white-flower allele to each of its  $F_2$  offspring. The four possible outcomes shown below are all equally likely, and will tend to show up in equal numbers when two plants have a large number of offspring.

## FLOWER COLOR: Making the F<sub>2</sub> generation

| The 4 equally likely allele pairs <b>inherited</b> from the F <sub>1</sub> <b>generation</b> | purple purple | <b>purple</b> white | white <b>purple</b> | white white |
|----------------------------------------------------------------------------------------------|---------------|---------------------|---------------------|-------------|
| F <sub>2</sub> flower color will be:                                                         | purple        | purple              | purple              | white       |

The two tables above show why Mendel found that none of the  $F_1$  plants showed **recessive traits**, but **recessive traits** showed again in about one quarter of the  $F_2$  **generation** plants. Compare these tables to the  $F_1$  and  $F_2$  rows in the diagrams earlier in this section.

Complete the tables below by writing in the **traits** for the  $F_2$  **generation** plants in the stem-length and pod-shape breeding experiments:

## STEM LENGTH: Making the F<sub>2</sub> generation

| The 4 equally likely allele pairs <b>inherited</b> from the F <sub>1</sub> <b>generation</b> | long long | <b>long</b> short | short <b>long</b> | short short |
|----------------------------------------------------------------------------------------------|-----------|-------------------|-------------------|-------------|
| F <sub>2</sub> stem length will be:                                                          |           |                   |                   |             |

## POD SHAPE: Making the F<sub>2</sub> generation

| The 4 equally likely allele pairs <b>inherited</b> from the F <sub>1</sub> <b>generation</b> | smooth smooth | smooth bumpy | bumpy <b>smooth</b> | bumpy bumpy |
|----------------------------------------------------------------------------------------------|---------------|--------------|---------------------|-------------|
| F <sub>2</sub> pod shape will be:                                                            |               |              |                     |             |

